(b) The required line passes through the points with position vectors -2 i + 3 j + 6 k and i+6i-k.

Hence, the direction vector of the line is of the form

$$(-2 i + 3 j + 6 k) - (i + 6 j - k) = -3 i - 3 j + 7 k$$

Therefore a possible vector equation of the required line is

$$r = (-2 i + 3 j + 6 k) + \lambda (-3 i - 3 j + 7 k) = (-2 - 3\lambda) i + (3 - 3\lambda) j + (6 + 7\lambda) k$$

Example 2.2

Determine if the point with position vector < -1, -6, 5 > lies on the line $r = < -1, 2 -3 > + \lambda < 0, -5, 5 >$.

Solution:

Since r represents the position vector of any point on the line, then r = < -1, -6, 5 > must satisfy $r = < -1, 2 -3 > + \lambda < 0, -5, 6 >$.

 $<-1, -6, 5> = <-1, 2-3> + \lambda < 0, -5, 5>.$ Consider

Comparing *i*-components:

Comparing *i*-components:

 $2-5\lambda=-6 \implies \lambda=1.6$

Comparing k-components: $-3 + 5\lambda = 5$ $\Rightarrow \lambda = 1.6$

Therefore, r = <-1, -6, 5 > satisfies the equation $r = <-1, 2 -3 > + \lambda < 0, -5, 5 >$. That is, the point with position vector <-1, -6, 5 > lies on the given line.

Example 2.3

Use a vector method to find the position vector of the point of intersection between the lines $r = <-1, 1, 3 > + \lambda < 1, 2, 1 >$ and $r = <2, 1, 8 > + \lambda < 1, -1, 2 >.$

Solution:

© O.T.Lee

Rewrite equations as $r = <-1, 1, 3>+\lambda<1, 2, 1>$

 $= < -1 + \lambda, 1 + 2\lambda, 3 + \lambda >$

and

 $r = \langle 2, 1, 8 \rangle + \mu \langle 1, -1, 2 \rangle$ $= < 2 + \mu, 1 - \mu, 8 + 2\mu >$.

At the point of intersection,

Comparing components:

 $<-1+\lambda$, $1+2\lambda$, $3+\lambda>=<2+\mu$, $1-\mu$, $8+2\mu>$.

 $-1 + \lambda = 2 + \mu$ $1 + 2\lambda = 1 - \mu$

(II)

 $3 + \lambda = 8 + 2\mu$

(III)

-1+av=2+y

Edit Action Interactive

1+2×=1-ץ | ע-1

Solve I and II simultaneously:

 $\lambda = 1, \mu = -2.$

10

Substitute $\lambda = 1$, $\mu = -2$ into (III), a true statement is obtained.

Hence, the two lines meet at < 0, 3, 4 >.

"trace" at the same pace. Hence, start by changing the " λ " in the second equation into "u". This makes sure that the two lines trace independently.

The two lines are

traced as the value of

λ changes. However,

they do not have to

Example 2.4

Use a vector method to show that the lines with equations $r = \langle 1, -1, 2 \rangle + \lambda \langle -2, 1, 1 \rangle$ and $r = <1, 1, -1> + \lambda < 3, -1, 1>$ are non-intersecting.

Solution:

Rewrite equations as $r = \langle 1 - 2\lambda, -1 + \lambda, 2 + \lambda \rangle$

 $r = < 1 + 3\mu, 1 - \mu, -1 + \mu >$.

At the point of intersection,

Comparing components:

 $< 1 - 2\lambda, -1 + \lambda, 2 + \lambda > = < 1 + 3\mu, 1 - \mu, -1 + \mu > .$ $1 - 2\lambda = 1 + 3\mu$

 $-1 + \lambda = 1 - \mu$

 $2 + \lambda = -1 + \mu$ \mathbf{m}

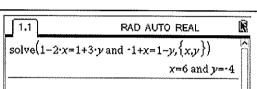
The two lines are traced as the value of λ changes. However, they do not have to "trace" at the same pace. Hence, start by changing the " λ " in the second equation into "u". This makes sure that the two lines trace independently.

Solve I and II simultaneously:

$$\lambda = 6, \, \mu = -4.$$

Substitute $\lambda = 6$, $\mu = -4$ into (III), a false statement is obtained.

Hence, the two lines do not intersect.



2.1.1 Parametric Equation of a Line

- The vector equation of the line L passing through the point with position vector a and parallel to vector d is given by $r = a + \lambda d$.
- Let $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$

Since, r represents the position vector of any point along this line, let r = y

- Hence, the equation of the line can be written as $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$
- Comparing the i, j and k components:

$$x = a_1 + \lambda d_1$$

$$y = a_2 + \lambda d_2$$

$$z = a_3 + \lambda d_3$$

This set of three equations is referred to as the parametric equation of the line L.

Example 2.4

Use a vector method to show that the lines with equations $r = \langle 1, -1, 2 \rangle + \lambda \langle -2, 1, 1 \rangle$ and $r = \langle 1, 1, -1 \rangle + \lambda \langle 3, -1, 1 \rangle$ are non-intersecting.

Solution:

Rewrite equations as $r = \langle 1 - 2\lambda, -1 + \lambda, 2 + \lambda \rangle$ and $r = \langle 1 + 3\mu, 1 - \mu, -1 + \mu \rangle$.

At the point of intersection,

$$<1-2\lambda, -1+\lambda, 2+\lambda> = <1+3\mu, 1-\mu, -1+\mu>$$
.

Comparing components: $1 - 2\lambda = 1 + 3\mu$

$$1 - 2\lambda = 1 + 3\mu$$
 (I)
 $-1 + \lambda = 1 - \mu$ (II)

$$2 + \lambda = -1 + \mu \tag{III}$$

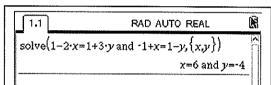
The two lines are traced as the value of λ changes. However, they do not have to "trace" at the same pace. Hence, start by changing the " λ " in the second equation into " μ ". This makes sure that the two lines trace independently.

Solve I and II simultaneously:

$$\lambda = 6, \, \mu = -4.$$

Substitute $\lambda = 6$, $\mu = -4$ into (III), a false statement is obtained.

Hence, the two lines do not intersect.



2.1.1 Parametric Equation of a Line

• The vector equation of the line L passing through the point with position vector a and parallel to vector d is given by $r = a + \lambda d$.

• Let
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$.

Since, r represents the position vector of any point along this line, let $r = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

- Hence, the equation of the line can be written as $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$.
- Comparing the i, j and k components:

$$x = a_1 + \lambda d_1$$

$$y = a_2 + \lambda d_2$$

$$z = a_3 + \lambda d_3$$

This set of three equations is referred to as the parametric equation of the line L.

Example 2.4

Use a vector method to show that the lines with equations $r = \langle 1, -1, 2 \rangle + \lambda \langle -2, 1, 1 \rangle$ and $r = <1, 1, -1> + \lambda < 3, -1, 1>$ are non-intersecting.

Solution:

Rewrite equations as $r = \langle 1 - 2\lambda, -1 + \lambda, 2 + \lambda \rangle$ $r = < 1 + 3\mu, 1 - \mu, -1 + \mu >$.

At the point of intersection,

$$<1-2\lambda, -1+\lambda, 2+\lambda> = <1+3\mu, 1-\mu, -1+\mu>$$
.

Comparing components:

$$1 - 2\lambda = 1 + 3\mu \tag{I}$$

$$-1 + \lambda = 1 - \mu \tag{II}$$

$$2 + \lambda = -1 + \mu \tag{II}$$

$$2 + \lambda = -1 + \mu \tag{III}$$

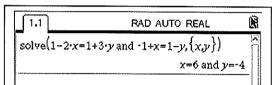
The two lines are traced as the value of λ changes. However. they do not have to "trace" at the same pace. Hence, start by changing the " λ " in the second equation into "µ". This makes sure that the two lines trace independently.

Solve I and II simultaneously:

$$\lambda = 6, \, \mu = -4.$$

Substitute $\lambda = 6$, $\mu = -4$ into (III), a false statement is obtained.

Hence, the two lines do not intersect.



Parametric Equation of a Line

• The vector equation of the line L passing through the point with position vector a and parallel to vector d is given by $r = a + \lambda d$.

• Let
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$.

Since, r represents the position vector of any point along this line, let $r = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

- Hence, the equation of the line can be written as $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_1 \end{pmatrix} + \lambda \begin{pmatrix} d_1 \\ d_2 \\ d_2 \end{pmatrix}$.
- Comparing the i, j and k components:

$$x = a_1 + \lambda d_1$$

$$y = a_2 + \lambda d_2$$

$$z = a_3 + \lambda d_3$$

This set of three equations is referred to as the parametric equation of the line L.

(d) The required line passes through the points with position vectors -2i+3j+6k and

$$1+OJ-K$$

Hence, the direction vector of the line is of the form

$$\lambda + i \xi - i \xi -$$

Therefore a possible vector equation of the required line is

$$\mathbf{A}(\lambda 7 + 3) + \mathbf{i}(\lambda \xi - \xi) + \mathbf{i}(\lambda \xi - 2) = (\mathbf{A} 7 + \mathbf{i} \xi - \mathbf{i} \xi) + (\mathbf{A} 3 + \mathbf{i} \xi + \mathbf{i} \xi) = (\mathbf{A} 7 + \mathbf{i} \xi) + (\mathbf{A} 3 + \mathbf{i} \xi)$$

Example 2.2

Determine if the point with position vector <-1, -6, 5 > lies on the line

:uounjos

Since \mathbf{r} represents the position vector of any point on the line, then $\mathbf{r}=-1$, -6, 5> must satisfy

$$<9$$
 $5-0>7+<\xi-5 1->=4$

Comparing
$$k$$
-components: $-3 + 5\lambda = 5 \Rightarrow \lambda = 1.6$

Comparing k-components:
$$-3 + 5\lambda = 5$$

Therefore,
$$\mathbf{r} = \langle -1, -6, 5 \rangle$$
 satisfies the equation $\mathbf{r} = \langle -1, 2, -3 \rangle + \lambda \langle 0, -5, 5 \rangle$.
That is, the point with position vector $\langle -1, -6, 5 \rangle$ lies on the given line.

Use a vector method to find the position vector of the point of intersection between the lines

 $1 < 2, 1, 3 > + \lambda < 1, 2, 1 >$ and $1 < 2, 1, 3 > + \lambda < 1, 1, 3 > + \lambda <$

The two lines are

:uoynjoS

pue

οι əռρη 100 ορ λəηι λ changes. Ηοννενει, ιιας σα της λαίμε οξ

= < -1 + y, 1 + 2y, $3 + \lambda >$ Rewrite equations as r = < -1, $1, 3 > + \lambda < 1$, 2, 1 >

1+5×=1-X

√+2=**×**+1-

★ Edit Action Interactive

(III)

(II)

(I)

into "µ". This makes the second equation ni "Å" shi gnignahə , נגמכה, מן נויה צמניה

ιναςε ιπαερεπαθεπίλ.

sure that the two lines

{Z==K*I=X}

pace. Hence, start by

Example 2.3

That is, the point with position vector < -1, -6, 5 > 1 lies on the given line.

comparing
$$k$$
-components: $-3 + 5 = 6$ $\Rightarrow \lambda = 1.6$ $\Rightarrow \lambda = 1.6$

$$6.1 = \lambda \iff 0 - = \lambda \xi - \zeta$$
 3.1 = $\lambda \iff 0 - = 1.6$ 3.1 = $\lambda \iff 0 = 1.6$ 3.4 = $\lambda \iff 0 \implies 0 = 1.6$

Comparing i-components:
$$-1 = -1$$

Comparing i-components: $2 - 5\lambda = -6 \implies \lambda = 1.6$

Comparing i-components:
$$-1 = -1$$

 $\lambda = 1$ λ

Comparing *i*-components:
$$-1 = -1$$

Comparing i-components:
$$-1 = -1$$

Comparing i-components:
$$-1 = -1$$

Consider
$$-1$$
, -6 , $5 > -1$, $1 = -1$ -1 , $-2 > +3$, $-3 > -1$

Consider
$$<-1,-6,5>=<-1,2-3>+\lambda<0,-5,5>$$
.

Consider
$$<-1,-6,5>=<-1,2-3>+\lambda<0,-5,5>$$
.

$$< C C' - 1 > V + < C - 7 I - > = 0$$

$$V = \langle -1, 2, -3 \rangle + \lambda \langle 0, -5, 5 \rangle$$

$$S = \langle -1, 2, -3 \rangle + \lambda \langle 0, -5, 5 \rangle$$

$$\mathbf{Y}(\chi L + 9) + \mathbf{f}(\chi \xi - \xi) + \mathbf{i}(\chi \xi - \zeta - 3\chi) = (\mathbf{Y} L + \mathbf{i} \xi - \mathbf{i} \xi - \chi) + (\mathbf{Y} 9 + \mathbf{i} \xi + \chi \zeta - \chi) = \mathbf{I}(\chi \xi - \chi) + \mathbf{i}(\chi \xi - \chi) + \mathbf{i}(\chi \xi - \chi) = \mathbf{i}(\chi \xi - \chi) + \mathbf{i}(\chi \xi - \chi) + \mathbf{i}(\chi \xi - \chi) = \mathbf{i}(\chi \xi$$

$$(3) + i(3) + i$$

$$A \Gamma + i \xi - i \xi - i \xi - i (A - i \beta + i) - (A \beta + i \xi + i \zeta - i \xi - i \xi$$

$$\mathbf{A} \mathbf{\Gamma} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{$$

$$\mathbf{A} \mathbf{\Gamma} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{$$

$$\mathbf{A} \mathbf{\Gamma} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{i} \mathbf{E} + \mathbf{i} \mathbf{E} - \mathbf{E} - \mathbf{i} \mathbf{E} - \mathbf{$$

Force, the direction vector of the fine is of the form
$$-2$$
 $\mathbf{i} + 3$ $\mathbf{i} + 6$ \mathbf{k}) $-(\mathbf{i} + 6$ $\mathbf{i} - \mathbf{k}) = -3$ $\mathbf{i} - 3$ $\mathbf{i} + 7$ \mathbf{k}

y = 1, $\mu = -2$.

 $3 + y = 8 + 5\mu$ $1 + 2\lambda = 1 - \mu$

 $-1 + \lambda = \lambda + \mu$

= < 2 + 4, 1 - 4, 8 + 2

< 2, 1, 4 < 1, 4 < 1, 2 > = 4

< 1 + 3, 1 + 2, 3 + 3 = < 2 + 4, 1 + 2 = < 3 + 4

Hence, the two lines meet at < 0, 3, 4 >.

a true statement is obtained.

Solve I and II simultaneously:

Comparing components:

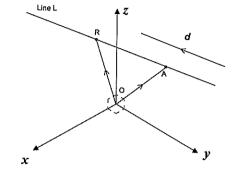
At the point of intersection,

Substitute $\lambda = 1$, $\mu = -2$ into (III),

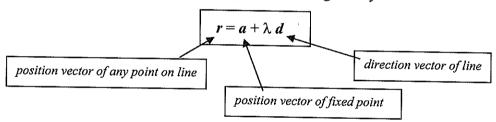
02 Vector Equation of Line & Plane

2.1 Vector Equation of a Line

- Consider the line L which passes through the fixed point A and which is parallel to vector d.
- The point A has position vector **OA**.
- Let R be a variable point on the line L. The position vector of R is OR.
- Clearly $\mathbf{OR} = \mathbf{OA} + \mathbf{AR}$.
- Since line L is parallel to d, AR must be parallel to d. Hence, AR = λd .



- Therefore, $OR = OA + \lambda d$. That is, the position vector of any point on the line L can be written in this form.
- Alternatively, the equation $OR = OA + \lambda d$ describes the position vector of any point on the line passing through the fixed point A and parallel to vector d. As λ changes, the point R traces a line parallel to d passing through the point A.
- Rewrite OR = r and OA = a. The vector equation of a line passing through the fixed point with position vector a and parallel to d is given by:



• Hence, the form of the equation is identical to that in the two-dimensional case.

Example 2.1

Find the vector equation of the line passing through the point with position vector -2 i + 3 j + 6 k and:

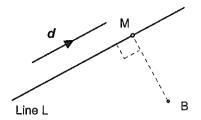
- (a) parallel to the vector i j + 2k
- (b) the point with position vector $\mathbf{i} + 6\mathbf{j} \mathbf{k}$.

Solution:

(a) Vector equation of line is $r = (-2 i + 3 j + 6 k) + \lambda (i - j + 2 k)$ = $(-2 + \lambda) i + (3 - \lambda) j + (6 + 2\lambda) k$

2.1.3 Shortest Distance between point and line

- Let M be a point on line L with equation $r = a + \lambda d$.
- Let B with position vector **b**, be a point not on line L.
- When B is closest to line L, M is the foot of the perpendicular from B to line L.
- Hence, when B is closest to line L,
 BM is perpendicular to line L.
 That is, BM is perpendicular to d (which is the direction vector of line L).
- Hence, the closest distance is $|\mathbf{BM}|$ where $\mathbf{BM} \bullet d = 0$.



Example 2.7

)

Use a vector method to find the minimum distance between the point P with position vector $\langle 2, 1, 4 \rangle$ and the line $r = \langle 2 + \lambda, -\lambda, -1 - \lambda \rangle$.

Solution:

Let M with position vector < a, b, c > be a point on the line $r = < 2 + \lambda, -\lambda, -1 - \lambda >$.

Hence,
$$< a, b, c > = < 2 + \lambda, -\lambda, -1 - \lambda >$$
.

This gives:

$$a = 2 + \lambda$$
$$b = -\lambda$$

$$c = -1 - \lambda$$

Also, **PM** =
$$\langle a, b, c \rangle - \langle 2, 1, 4 \rangle$$

= $\langle 2 + \lambda, -\lambda, -1 - \lambda \rangle - \langle 2, 1, 4 \rangle$
= $\langle \lambda, -\lambda - 1, -\lambda - 5 \rangle$

P is closest to the given line when PM is perpendicular to its direction vector d.

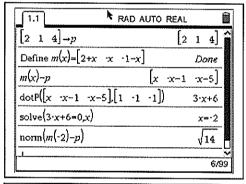
Direction vector of line is d = <1, -1, -1>.

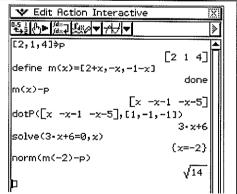
$$\Rightarrow <\lambda, -\lambda - 1, -\lambda - 5 > \cdot < 1, -1, -1 > = 0$$
$$\Rightarrow \lambda = -2$$

Hence, shortest distance between P and given line $= |\langle \lambda - \lambda - 1 - \lambda - 5 \rangle|$

$$= \left| \langle \lambda, -\lambda - 1, -\lambda - 5 \rangle \right|$$

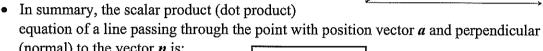
= $\left| \langle -2, 1, -3 \rangle \right|$
= $\sqrt{14}$

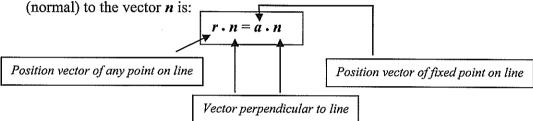




2.2 Review: Scalar Product Equation of a Line in 2D

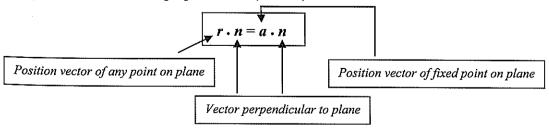
- Consider Line L which passes through the point A
 with position vector a. Let Line L be perpendicular
 to vector n.
- Let R with position vector r be any point on Line L.
- Clearly, AR is also perpendicular to n.
- Hence, $\mathbf{AR} \cdot \mathbf{n} = 0$. But $\mathbf{AR} = \mathbf{r} - \mathbf{a}$. \Rightarrow $(\mathbf{r} - \mathbf{a}) \cdot \mathbf{n} = 0$ $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$

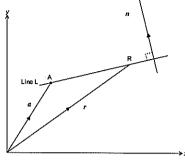




2.3 Vector Equation of a Plane

- Consider the plane Π which passes through the fixed point A with position vector a. Let vector n be perpendicular to the plane Π.
- Let point R with position vector r be any point on the plane Π. Note that the points A and R form a line L on the plane Π.
- Clearly, AR which is within the plane
 Π is also perpendicular to n.
- Hence, $\mathbf{AR} \cdot \mathbf{n} = 0$. But $\mathbf{AR} = \mathbf{r} - \mathbf{a}$. \Rightarrow $(\mathbf{r} - \mathbf{a}) \cdot \mathbf{n} = 0$ $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$
- In summary, the vector equation of a plane passing through the point with position vector \boldsymbol{a} and perpendicular (normal) to the vector \boldsymbol{n} is:





:910N

- The vector equation $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$ is ambiguous and must be read in context.
- In a 2D context, it represents the vector equation (scalar product form) of a line
 passing through the fixed point with position vector a and perpendicular to vector n.
- However, in a 3D context, it represents the vector equation of a plane passing through the fixed point with position vector a and perpendicular to vector n.
- In each case, n is termed the normal vector.

Example 2.8

Given that the point < 1, 1, 5 > lies on the plane $\mathbf{r} \cdot < 3$, 1, -4 > = k. Find k.

:noimlo2

Substitute < 1, 1, 5 > . < 3, 1, -4 > = k. Substitute < 1, 1, 5 > . < 3, 1, -4 > = k. Substitute < 1, 1, 5 > . < 3, 1, -4 > = k.

Example 2.9

Determine if the points with position vectors < 1, 1, 4> and < 5, -1, 8> lie on the plane with

equation $\mathbf{r} \cdot < -1$, 3, 2 > = 10.

:noimlo2

Substitute < 1, 1, 4> into LHS of equation of line. \Rightarrow < 1, 1, 4> • < -1, 3, 2 > = 10.

Hence, <-1, 3, 2 > lies on the plane.

 $< 5, -1, 8 > \cdot < -1, 3, 2 > = 8 \neq 10$. Hence, < 5, -1, 8 > does not lie on the plane.

Example 2.10

Find the vector equation of the plane passing through the point with position vector -2i+3j+k and perpendicular to the vector -3i+2k.

:uoinioS

Vector equation of plane is $\mathbf{r} \cdot (-2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) = (-2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) \cdot (-3\mathbf{i} + 3\mathbf{j} + \mathbf{k})$ $\Rightarrow \mathbf{r} \cdot (-2\mathbf{i} + 3\mathbf{j} + \mathbf{k}) = 8$

Example 2.11

Find the vector equation of the plane perpendicular to the vector < 2, -2, 5 > and containing the line with equation $r = < 1 - 2\lambda, 3 + 4\lambda, -1 - \lambda >$.

Solution:

Let $\lambda = 0$.

Hence, the point with position vector < 1, 3, -1 > lies on the given line and hence lies on the given plane.

Therefore, vector equation of plane is
$$r \cdot < 1, 3, -1 > = < 1, 3, -1 > \cdot < 2, -2, 5 > r \cdot < 1, 3, -1 > = -9$$

Example 2.12

Find the position vector of the point of intersection between the line $r = \langle 2\lambda, 1 + \lambda, 3 - \lambda \rangle$ and the plane $r \cdot \langle -1, 1, 4 \rangle = 3$.

Solution:

Substitute
$$r = \langle 2\lambda, 1 + \lambda, 3 - \lambda \rangle$$
 into $r \cdot \langle -1, 1, 4 \rangle = 5$.
 $\langle 2\lambda, 1 + \lambda, 3 - \lambda \rangle \cdot \langle -1, 1, 4 \rangle = 3$
 $\Rightarrow -5\lambda + 13 = 3 \Rightarrow \lambda = 2$

Hence, point of intersection has position vector < 4, 3, 1 >.

Example 2.13

Find the vector equation of the plane passing through the points A, B and C with position vectors < 1, 2, 1 >, < -2, -1, 4 > and < 2, 1, -2 > respectively.

Solution:

$$AB = < -2, -1, 4 > - < 1, 2, 1 > = < -3, -3, 3 >$$

 $AC = < 2, 1, -2 > - < 1, 2, 1 > = < 1, -1, -3 >$

Let $n = \langle x, y, z \rangle$ be the normal vector to the plane containing the points A, B and C.

Hence,
$$\mathbf{AB} \cdot \langle x, y, z \rangle = 0$$
 $\Rightarrow \langle -3, -3, 3 \rangle \cdot \langle x, y, z \rangle = 0$
 $\Rightarrow -3x - 3y + 3z = 0$
 $-x - y + z = 0$

Also,
$$\mathbf{AC} \cdot \langle x, y, z \rangle = 0$$
 $\Rightarrow \langle 1, -1, -3 \rangle \cdot \langle x, y, z \rangle = 0$
 $\Rightarrow x - y - 3z = 0$ II

I + II gives:
$$-2y - 2z = 0 \implies y = -z$$

Substitute into I $x = 2z$

Hence, any vector of the form $\langle 2t, -t, t \rangle$ where t is real, will be normal to the plane.

Hence, vector equation of plane is
$$r \cdot < 2, -1, 1 > = < 1, 2, 1 > \cdot < 2, -1, 1 >$$

 $r \cdot < 2, -1, 1 > = 1$

